If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9-2x)=(7-4x+6x^2)
We move all terms to the left:
(9-2x)-((7-4x+6x^2))=0
We add all the numbers together, and all the variables
-((7-4x+6x^2))+(-2x+9)=0
We get rid of parentheses
-((7-4x+6x^2))-2x+9=0
We calculate terms in parentheses: -((7-4x+6x^2)), so:We add all the numbers together, and all the variables
(7-4x+6x^2)
We get rid of parentheses
6x^2-4x+7
Back to the equation:
-(6x^2-4x+7)
-2x-(6x^2-4x+7)+9=0
We get rid of parentheses
-6x^2-2x+4x-7+9=0
We add all the numbers together, and all the variables
-6x^2+2x+2=0
a = -6; b = 2; c = +2;
Δ = b2-4ac
Δ = 22-4·(-6)·2
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*-6}=\frac{-2-2\sqrt{13}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*-6}=\frac{-2+2\sqrt{13}}{-12} $
| 10=6-x/2 | | 21=9+2c | | 21=4c+9 | | x+(30x+x)=90 | | 10(x-7)=-151 | | 5^3x=6^-x+1 | | 7y-2(8y+1)=-6 | | w/12-9=0 | | 2b=-5b+7b | | 4=16-4h | | s6+2s=588 | | 10=13-w | | -(c—10)=-2 | | 2/10=4/a+3 | | 8x−5x+2=3x−2 | | 7y+15=43 | | 5x^2+16x=-12 | | 12=14+7x | | 180=3x+20 | | x/5-12=88 | | 3÷2x=4÷5 | | 8x^2=x^2-24 | | 3.3=6.1-0.4x | | -3x-8=-7x-7 | | (d-11)*9=90 | | 15y+5(1-y)=9 | | 5g=6=7g-3 | | 8(4b+10)=176 | | 1.98g-4=0.95 | | 15y+5(1-y)=12 | | 12=y+17 | | 7w=4w−6 |